
Neurocomputing 104 (2013) 57–71
Contents lists available at SciVerse ScienceDirect
Neurocomputing
0925-23

http://d

n Corr

E-m

njuxing

hasegaw
journal homepage: www.elsevier.com/locate/neucom
A general associative memory based on self-organizing incremental
neural network
Furao Shen a,n, Qiubao Ouyang a, Wataru Kasai b, Osamu Hasegawa b

a National Key Laboratory for Novel Software Technology, Nanjing University, China
b Imaging Science and Engineering Lab., Tokyo Institute of Technology, Japan
a r t i c l e i n f o

Article history:

Received 28 September 2010

Received in revised form

28 September 2012

Accepted 4 October 2012
Communicated by G. Palm
incrementally to corresponding classes. The associative layer builds associative relationships between
Available online 28 November 2012

Keywords:

General associative memory

Incremental learning

Temporal sequence

Real-value data

Many-to-many association
12/$ - see front matter & 2012 Elsevier B.V. A

x.doi.org/10.1016/j.neucom.2012.10.003

esponding author.

ail addresses: frshen@nju.edu.cn (F. Shen),

kong@gmail.com (Q. Ouyang), kasai.w.aa@m.

a@isl.titech.ac.jp (O. Hasegawa).
a b s t r a c t

This paper proposes a general associative memory (GAM) system that combines the functions of other

typical associative memory (AM) systems. The GAM is a network consisting of three layers: an input

layer, a memory layer, and an associative layer. The input layer accepts key vectors, response vectors,

and the associative relationships between these vectors. The memory layer stores the input vectors

classes. The GAM can store and recall binary or non-binary information, learn key vectors and response

vectors incrementally, realize many-to-many associations with no predefined conditions, store and

recall both static and temporal sequence information, and recall information from incomplete or noise-

polluted inputs. Experiments using binary data, real-value data, and temporal sequences show that

GAM is an efficient system. The AM experiments using a humanoid robot demonstrates that GAM can

accommodate real tasks and build associations between patterns with different dimensions.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

An associative memory (AM) stores data in a distributed
fashion, which is addressed through its contents. An AM can
recall information from incomplete or garbled inputs and finds
applications in face recognition [1], pattern recognition [2],
robotics [3], image and voice recognition, and databases [4].

When an input pattern, called a key vector, is presented, the
AM is expected to return a stored memory pattern (called a
response vector) associated with that key. AM system have
several requirements, each putting constraints on the possible
AM systems that we might use. (1) An AM system must store and
recall binary or non-binary information. Traditional methods such
as the Hopfield network [5], the bidirectional associative memory
(BAM) [6] and their variants specifically examine the use of binary
AM with a discrete state, but few reports in the literature describe
generalization of the original idea to non-binary cases. Even fewer
address the continuous case. However, in the real world, patterns
are usually represented by gray-level feature vectors or real-
valued feature vectors. It is also necessary for AM systems to store
and recall non-binary information. (2) An AM system must
memorize incrementally and associate new information without
ll rights reserved.

titech.ac.jp (W. Kasai),
destroying the stored knowledge. Human memory has the ability
to learn new knowledge incrementally without destroying the
previously learned knowledge. Unfortunately, traditional AM
systems, such as the Hopfield network and BAM, destroy learned
weight vectors subsequent to network training and learned
knowledge cannot be recalled accurately if we want to store
new patterns [7]. (3) An AM system must be able to memorize
temporal sequence information as well as static information.
Humans do not memorize temporal sequences as static patterns
but as patterns with a consecutive relation. (4) An AM system
must not only realize one-to-one association but also one-to-
many, many-to-one, or many-to-many association. (5) An AM
system must be robust. It must be able to recall information from
incomplete or garbled inputs.

Several neural models have been proposed to achieve one or
more of these requirements. Sussner and Valle [8] designed an
AM for processing non-binary cases, but ignored the other
requirements. The Kohonen feature map (KFP) [9] employed
competitive learning – patterns were presented sequentially to
train the memory system – but it still could not realize incre-
mental learning. When new patterns enter the system, the weight
of nodes storing learned information changes to store the new
pattern. Sudo et al. proposed a self-organizing incremental
associative memory (SOIAM) [10] specifically to store new pat-
terns incrementally without destroying the memorized informa-
tion; however, SOIAM cannot address temporal sequences. Kosko
[6] and Hattori and Hagiwara [11] processed the temporal

www.elsevier.com/locate/neucom
www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2012.10.003
dx.doi.org/10.1016/j.neucom.2012.10.003
dx.doi.org/10.1016/j.neucom.2012.10.003
mailto:frshen@nju.edu.cn
mailto:njuxingkong@gmail.com
mailto:kasai.w.aa@m.titech.ac.jp
mailto:hasegawa@isl.titech.ac.jp
dx.doi.org/10.1016/j.neucom.2012.10.003

F. Shen et al. / Neurocomputing 104 (2013) 57–7158
sequences, but their methods only dealt with simple temporal
sequences. Their AM systems are not effective with repeated or
shared items in the temporal sequences. Barreto and Araujo [12]
learned the temporal order through a time-delayed Hebbian
learning rule, but the complexity of the model depends consider-
ably on the number of context units. Sakurai et al. [13] proposed a
self-organizing map based associative memory (SOM-AM) for
temporal sequences, but its recall performance is affected by
the initial values of the weights. Such methods only consider the
binary temporal sequence without touching the real-valued
sequence. Furthermore, it is difficult for such methods to imple-
ment incremental learning for temporal sequences. Multidirec-
tional associative memory (MAM) [14] realized many-to-many
association, but the association was not flexible. The number of
associations must be predetermined and the number of layers
must be preset with the number of associations.

In this paper, we propose an AM system that satisfies all the
requirements using a three-layer network: an input layer, a
memory layer, and an associative layer. The input layer accepts
key and response vectors to the memory layer; the memory layer
stores the information obtained from the input layer. Both key
and response vector information can be stored in the memory
layer. Incremental learning is available for learning of the memory
layer: new key and response vectors can be memorized incremen-
tally. The associative layer builds an associative relationship
between the key vector and the response vector. This layer con-
structs many-to-many and temporal sequence associations.

In a way, our AM system can be considered a symbol system
[15], a cognitive model of the human mind. The input layer
receives the sensory representations, the memory layer encodes
them as symbols, and the associative layer performs a function of
symbol grounding.

Using the proposed AM system with a three-layer network, we
achieve the following goals: (1) processing memory patterns by
classes. Rather than memorizing all patterns in a same network,
patterns belong to different classes are memorized in different
subnetworks respectively; (2) storing and recalling binary or non-
binary information; (3) learning the key vectors and response
vectors incrementally; (4) realizing one-to-one, one-to-many,
many-to-one, and many-to-many associations with no predefined
condition; (5) storing and recalling both static and temporal
sequence information; (6) building an association among data of
different types (patterns with different dimensions); and (7) recal-
ling information from incomplete or noise-polluted inputs.
Because the proposed method satisfies all these requirements,
we call it a general associative memory (GAM).

This paper is organized as follows: Section 2 discusses the
GAM principles and introduces the GAM structure; Section 3
explains how GAM memorizes key vectors, response vectors, and
association relationships; Section 4 discusses how it recalls or
associates stored patterns; in Section 5, we perform experiments
that compare GAM with other AM models, and describe the
efficiency of GAM.
Fig. 1. Network structure of a general associative memory (GAM). The input layer

accepts key vectors, response vectors, and associative relationships between these

vectors. The memory layer incrementally stores the input vectors with subnet-

works (classes). The associative layer incrementally builds associations between

the classes.
2. Structure of the general associative memory (GAM)

Our design decisions for GAM are based on the following six
principles, such principles are very important for human intelli-
gence [16]:

(1) Memorize patterns by classes: If patterns belong to one class,
they are memorized with a subnetwork; different classes adopt
different subnetworks to store the patterns belonging to each
class. To realize this, each input pattern receives a class label
during the memorization process. The patterns belonging to one
class will be used to train the corresponding subnetwork.
(2) Memorize patterns with binary or non-binary feature vectors:
It is natural for human to remember a multicolored world with-
out transforming images into a special binary format. It is
important to remember feature representation of patterns
directly without transforming feature vectors to a binary format.

(3) Memorize temporal sequences with contextual items, and do

not store the complete temporal sequence as one pattern: The
human memory stores a temporal sequence, such as a song, by
remembering separate context items with their time order, the
way we do with musical notes. The memory system will store the
contextual items with a time order rather than storing the
temporal sequence as a static pattern.

(4) Memorize patterns incrementally: Incremental learning has
two aspects: (i) class-incremental, where classes can be remem-
bered incrementally, i.e., during system training, new classes
(new subnetworks) can be added incrementally; (ii) example-
incremental: within the same class, new information can be
added incrementally. The system can memorize new patterns
without destroying stored patterns if new patterns belonging to a
trained class are input.

(5) First, realize auto-association, and then hetero-association:
Human initially recognize or recall a class with a garbled or
incomplete key vector, and then associate it with other classes
according to the recognition of the key vector. Pattern recognition
or pattern completion process uses auto-associative information;
association between classes uses hetero-associative information.

(6) In addition to one-to-one association, one-to-many, many-
to-one, and many-to-many associations are necessary, requiring
an association network. In this network, one class is used for
association with several other classes. The class itself is also
associated by other classes. The system must be able to incre-
mentally add new associations between the memorized classes.

Based on these six principles, we designed the three-layer
network discussed in Section 1. Fig. 1 presents the three-layer
GAM network structure.

The input layer accepts input patterns to the GAM. The input
feature vector (either a key vector or a response vector) is input
into the system with a class label. According to the class label, the
GAM locates the corresponding subnetwork in the memory layer;
and learns the new input information incrementally. If the input
vector does not belong to an existing class in the memory layer,
the GAM builds a new subnetwork in the memory layer to
represent the new class. The GAM sends the class labels of
subnetworks in the memory layer to the associative layer, and
the associative layer builds relationships between the class of key
vector (the key class) and the class of response vector (the
response class) by using arrow edges. One node exists in the
associative layer corresponding to one subnetwork in the memory
layer. The arrow edges connecting these nodes represent the

kamela
Highlight

kamela
Highlight

F. Shen et al. / Neurocomputing 104 (2013) 57–71 59
associative relationships between the classes. The beginning of an
arrow edge indicates the key class; and the end of the arrow edge
indicates the corresponding response class.

This three-layer network structure is useful in realizing all six
principles. The input layer accepts both binary and non-binary
patterns. In the memory layer, different subnetworks memorize
different classes. Contextual patterns of temporal sequences are
memorized in the memory layer, and the associated time orders
are memorized in the associative layer. Incremental learning is
realized during the training of the memory and associative layers.
The memory layer also realizes auto-association (pattern recogni-
tion or pattern completion), and the associative layer is used for
hetero-association. The associative layer itself is a network for
incrementally building any association: one-to-one, one-to-many,
many-to-one, or many-to-many.

Section 3 provides details on training the memory and asso-
ciative layers. Section 4 discusses the recall and association
processes.
3. GAM learning algorithms

During training of the memory layer, it is important to
memorize the input patterns by using real-value feature vectors
and realize incremental learning.

During training of the associative layer, the associative rela-
tionships between the key and response vectors are memorized in
the associative layer. In addition, for temporal sequences, the
associative layer must memorize the associative relationship and
the time order between contextual patterns. Also, the associative
layer must be able to learn new associations incrementally.

3.1. Memory layer

In the memory layer, we need to store input vectors in the
weight of nodes and recall the vectors with the learned weight. It
means that we need to use a finite set of weight vectors to store
maybe infinite input vectors. For example, we have an input data
set V DRD, utilizing only a set W ¼ ðW1, . . . ,WNÞ of reference or
‘‘weight’’ vectors to encode V, where W iARD, i¼ 1, . . . ,N.

For competitive learning, a data vector vAV is described by
the best-matching or ‘‘winning’’ reference vector W iðvÞ of W for
which the distortion error dðv,W iðvÞÞ is minimal. This procedure
divides the data set V into a number of subregions

Vi ¼ fvAV9dðv,W iÞrdðv,W jÞ8jg ð1Þ

called Voronoi polygons or Voronoi polyhedra, out of which each
data vector v is described by the corresponding reference vector
W i.

If the probability distribution of data vectors over the data set
V is described by PðvÞ, then the average distortion or reconstruc-
tion error is determined by

E¼

Z
dDvPðvÞðv�W iðvÞÞ

2
ð2Þ

and has to be minimized through an optimal choice of reference
vectors W i [17]. In general, the error surface E has many local
minima, and it suits the target of associative memory for store
and recalling input patterns.

The straightforward approach to minimizing (2) would be a
gradient descent on E which leads to Lloyd and MacQueen’s well-
known K-means clustering algorithm [18,19]. In its online version,
which is applied if the data point distribution PðvÞ is not given a
priori, but instead a stochastic sequence of incoming sample data
points vðt¼ 1Þ,vðt¼ 2Þ,vðt¼ 3Þ, . . . which is governed by PðvÞ drives
the adaptation procedure, the adjustment steps for the reference
vectors or cluster centers W i is determined by

DW i ¼ e � diiðvðtÞÞ � ðvðtÞ�W iÞ, i¼ 1, . . . ,N ð3Þ

with e as the step size and dij as the Kronecker delta.
Here, we build the memory layer based on a self-organizing

incremental neural network (SOINN) [20]. SOINN is based on
competitive learning; neural nodes represent the distribution of
input data. The weights of such nodes serve as reference vectors
to store the input patterns.

The memory layer stores input patterns and consists of subnet-
works, each representing one class, as shown in Fig. 1. All patterns
belonging to one class are memorized in the corresponding subnet-
work. Building the subnetworks requires memorizing real-valued
patterns and realizing incremental learning. As described in Section
1, some traditional AM systems are unable to process real-valued
patterns. Some methods have been designed to memorize real-valued
patterns, but it is difficult for them to perform incremental learning.

Some pioneering methods are useful in representing the dis-
tribution of input data. The well-known self-organizing map
(SOM) [21] generates mapping from a high-dimensional signal
space to a lower-dimensional topological structure, but the pre-
determined network structure and size impose limitations on the
resulting mapping [17] and incremental learning [20]. The combi-
nation of ‘‘competitive Hebbian learning’’ (CHL) and ‘‘neural gas’’
(NG) [17] also requires a prior decision related to the network size.
Growing neural gas (GNG) [22] presents the disadvantage of a
permanent increase in the number of nodes if the number of
nodes is not predetermined.

Most extensions of vector quantization cannot deal with incre-
mental learning and often involve high computational complexity
[25][26]. Therefore, these methods cannot fulfill our requirements.
Using the technique of class-specific vector quantization, some
algorithms such as learning vector quantization(LVQ), can partially
solve the incremental learning problem with nothing predeter-
mined. Incremental learning may be class-incremental or example-
incremental. LVQ cannot handle the example-incremental learning
problems.

Some noncompetitive methods, such as the support vector
machine (SVM) [23] and backpropagation neural networks [24],
are unsuitable for incremental learning. New inputs will require
retraining of the entire system.

The SOINN and its enhanced version [27] execute topology
representation and class-incremental and example-incremental
learning without requiring predetermination of the network
structure and size. SOINN can implement both real-valued pattern
memorization and incremental learning. Self-organizing incre-
mental associative memory (SOIAM) [10] is based on SOINN. Here,
the basic idea of training the GAM memory layer is explained by
SOINN. We adjust the unsupervised SOINN to a supervised mode:
for each class, we adopt a SOINN to represent the distribution of
that class. The input patterns (key and response vectors) are
separated into different classes. For each class, one subnetwork
represents the data distribution of the class.

3.1.1. Overview of SOINN

A SOINN adopts a two-layer network. The first layer learns the
density distribution of the input data and uses nodes and edges to
represent this distribution. The second layer separates the clusters
by detecting the low-density area of input data; it uses fewer nodes
than the first layer does to represent the topological structure of the
input data. When the second layer learning completes, SOINN gives
typical prototype nodes to every cluster; it adopts the same
learning algorithm for the first and second layers.

When SOINN receives an input vector, it finds the nearest
(winner) and second nearest node (runner up) of the input vector,
then judges if the input vector belongs to the same cluster as the

kamela
Highlight

kamela
Highlight

Fig. 2. Overview of SOINN: (left) if the input vector lies beyond the Voronoi region of the winner and second winner, insert it as a new node; (center) updating the weight

of the winner and its neighbors by moving them toward the input vector; (right) deletion of noise nodes—marked with a solid circle.

Table 1
Contents of a node in the memory layer.

Notation Meaning

ci Class name of node i

W i Weight vector of node i

Thi Similarity threshold of node i

Mi The number of patterns represented by node i

Ei Set of nodes connected with node i

Ii Index of node i in sub-network ci

Table 2
Notation to be used in the following algorithms.

Notation Meaning

A Node set of the memory layer

S Sub-network set of the memory layer

C Connection set of the memory layer

ci The ith node in the sub-network c

(i,j) Connection between node i and node j

ageði,jÞ Age of the connection between node i and node j

agemax Maximum age threshold

F. Shen et al. / Neurocomputing 104 (2013) 57–7160
winner or runner up by using the criterion of similarity thresh-
olds. In the first layer, this threshold updates adaptively for every
node. As shown in the left of Fig. 2, if the distance between the
input vector and the winner or runner up is greater than the
similarity threshold of a winner or runner up, the input vector is
inserted into the network as a new node.

The similarity threshold Ti is defined as the Euclidean distance
from the boundary to the center of the Voronoi region Vi of node i.
During the learning process, node i changes its position to meet
the input pattern distribution, and the Voronoi region Vi of the
node i also changes. When a new node i is generated, the
similarity threshold Ti of node i is initialized to þ1. When node
i becomes the winner or second winner, the similarity threshold Ti

is updated. If node i has direct topological neighbor (a node linked
to node i with an edge), Ti is updated to the maximum distance
between node i and all its neighbors

Ti ¼max
cANi

JWi�WcJ, ð4Þ

where Wi is the weight vector of node i and Ni is the neighbor set
of node i. JWi�WcJ means the Euclidean distance between two
vectors Wi and Wc . If node i has no neighbor, Ti is updated as the
minimum distance of node i and all other nodes in the network A

Ti ¼ min
cAA\fig

JWi�WcJ ð5Þ

and A is the node set.
If the input vector is judged as belonging to the same cluster as

the winner or runner up, and if no edge connects the winner and
runner up, connect the winner and runner up with an edge, and
set the ‘age’ of the edge to ‘0’; subsequently, increase the age of all
edges linked to the winner by ‘1’.

Then, update the weight vector of the winner and its neigh-
boring nodes, i.e., move the winner and its neighbors toward the
input vector, as shown in the center of Fig. 2. If node i is the
winner, changes DW i to the weight of winner i and DW j to the
weight of the neighboring node jðANiÞ of i are defined as

DW i ¼
1

Mi
ðv�W iÞ, ð6Þ

DW j ¼
1

100Mi
ðv�W jÞ, ð7Þ

v is the input vector, Mi is the times for which node i was the
winner—it shows the frequency of node i being winner.

If the age of one edge is greater than a predefined parameter
agemax, remove that edge.

Subsequent to l learning iterations (l is a timer), SOINN
inserts new nodes in the position where the accumulating error
is extremely large. Cancel the insertion if it cannot decrease the
error. Then, SOINN finds the nodes whose neighbors are less than
or equal to 1 and deletes these nodes assuming that they lie in the
low-density area—these nodes are called ‘‘noise nodes.’’ The right
of Fig. 2 shows the deletion of noise nodes.

Subsequent to LT learning iterations of the first layer, the
learning results are used as inputs to the second layer, which uses
the same learning algorithm as the first layer. For the second
layer, the similarity threshold is constant and it calculated with
the help of within-cluster and between-cluster distances. With a
large constant similarity threshold, the second-layer also deletes
some ‘‘noise nodes’’ that were not deleted during first layer
learning. For details about SOINN, refer to [20].
3.1.2. Learning algorithm of the memory layer

We adopt the first-layer of SOINN and adjusted the unsuper-
vised SOINN for supervised mode: for each class we adopt one
SOINN to represent the distribution of that class.

Before we assign the learning algorithm for the memory layer,
we present Table 1 to define the contents of nodes in memory
layer. Some other notation to be used in the learning algorithm is
defined in Table 2.

Algorithm 1 shows the proposed algorithm for training of the
memory layer. When a vector is input to the memory layer, if
there is no sub-network named with the class name of this input
vector, then set up a new sub-network with the input vector as
the first node of the new sub-network. Name this sub-network
with the class name of the input vector. Find the nearest node
(winner) and the second nearest node (runner up) in this sub-
network if there is already a sub-network with the same class
name as the input vector. If the distance between input vector and

kamela
Highlight

Fig. 3. Two methods for defining closeness among a set of points. (a) Delaunay

triangulation (thick lines) connects points having neighboring Voronoi polygons

(thin lines). (b) Induced Delaunay triangulation (thick lines) is obtained by masking

F. Shen et al. / Neurocomputing 104 (2013) 57–71 61
the winner is greater than the winner’s similarity threshold, then
insert a new node into the sub-network. The weight of the new
node is set as the input vector. The similarity threshold of the new
node is set as the distance from winner. Then update the winner’s
similarity threshold. Update the weight and similarity threshold of
the winner if the distance between input vector and the winner is
less than the similarity threshold of the winner. If no edge connects
the winner and runner up, connect the winner and runner up with
an edge, and set the ‘age’ of the edge to ‘0’;subsequently, increase
the age of all edges linked to the winner by ‘1’. At last, if the age of
one edge is greater than a predefined parameter agemax, remove
that edge. Also, isolated nodes are removed.

Algorithm 1. Learning of the memory layer.
the original Delaunay triangulation with a data distribution PðxÞ (shaded).
1:
 Initialize the memory layer network: A¼ |, S¼ |, C ¼ |.

2:
 Input a pattern xARD to the memory layer, the class name

of x is cx.

3:
 if There is no sub-network with name cx then

4:
 Add a sub-network cx to the memory layer by

S¼ S [fcxg, A¼ A [fc1
x g, and Wc1

x
¼ x, Thc1

x
¼ 0, Mc1

x
¼ 1,

Nc1
x
¼ 0. Go to Step 2.
5:
 else

6:
 Find winner s1 and runner up s2 by
s1 ¼ arg min
iA cx

99x�Wci
x
J, s2 ¼ arg min

iA cx\s1

Jx�Wci
x
J ð8Þ
update Ms1
by Ms1

’Ms1
þ1.
7:
 end if

8:
 if Jx�W s1

J4Ths1
then
9:
 Insert new node cnew
x into the sub-network cx with

Wcnew
x
¼ x, Thcnew

x
¼ Jx�W s1

J, Mcnew
x
¼ 1, Ncnew

x
¼ 0. Update

similarity threshold of s1
Ths1
¼ Thcnew

x

ð9Þ
10:
 else

11:
 Update the weight of winner and the runner up by
W s1
’W s1

þds1
ðx�Ws1

Þ
ð10Þ
W s2
’W s2

þds2
ðx�Ws2

Þ
ð11Þ
where ds1
¼ 1=Ms1

and ds2
¼ 1=ð100Ms1

Þ. Update the

threshold of s1
Ths1
’ðThs1

þJx�Ws1
JÞ=2: ð12Þ
12:
 end if

13:
 Create a connection ðs1,s2Þ and add it to C, i.e.

C ¼ C [ðs1,s2Þ.

14:
 Set the age of the connection between s1 and s2 to zero, i.e.

ageðs1 ,s2Þ
¼ 0.
15:
 Increase age of edges which connected with s1 and its

neighbors: ageðs1 ,iÞ’ageðs1 ,iÞ þ1,ð8iAEs1
Þ.
16:
 If the training is not finished, go to Step 2 to process the
next pattern.
17:
 Remove old edges: If ði,jÞAC, and ageði,jÞ4agemaxð8i,jAAÞ,

then C’C\fði,jÞg.

18:
 Remove isolated nodes from A, i.e., if Ei ¼ |ðiAAÞ, then

A¼ A\fig.
According to [27], to build connections among neural nodes,
SOINN adopts the competitive Hebbian rule [17]: for each input
signal, connect the two closest nodes (winner and runner up)
with an edge. This rule forms a network whose edges are in the
area suggested by the input data distributions (Fig. 3b). The
network represents a subgraph of the original Delaunay triangu-
lation (Fig. 3a). Using the competitive Hebbian rule, the resultant
graph approximates the shape of the input data distributions [17].
This means that SOINN can effectively represent the topological
structure of input data. Hence, Algorithm 1 can represent the
input data distribution. Therefore, GAM uses weights of nodes in
the memory layer to represent the input pattern, and the nodes of
subnetworks are the centers of Voronoi regions. Such nodes serve
as attractors for a future recall phase—the Voronoi regions form
basins of attraction, and the nodes similarity thresholds serve as
the radii of the basins of attraction. For example, if there is a node
i in the memory layer, the Voronoi region of i is Vi, the similarity
threshold of i is Ti, then i serves as the attractor, Vi serves as the
attraction basin, and Ti serves as the radius of Vi.

Algorithm 1 also achieves incremental learning. For class-
incremental, new classes are learned incrementally by adding
new subnetworks; for example-incremental, new patterns inside
one class are learned incrementally by adding new nodes to an
existing subnetwork. The number of subnetworks is determined
by the number of classes of input patterns. When a new class
arises, the memory layer reacts to the new class without destroying
old classes. Inside one class, SOINN controls the increment of nodes
for learning without unlimited increase in the number of nodes.

From Algorithm 1, we know that if the similarity threshold is
too small, then it is easy for a new node to be inserted into the
network. If the threshold is too large, then it becomes difficult to
insert new nodes, and the tuning of weights will happen easily. In
Step 9 of Algorithm 1, when insertion of a node occurs, formula
(9) will be used to update the threshold of the winner with a
larger value to make the next insertion near the winner become
difficult. In Step 11 of Algorithm 1, the tuning of weight for the
winner and the runner up happens. Then formula (12) will be
used to update the threshold of the winner with a smaller value to
make the next insertion become easy to ensure that the memory
layer can learn new knowledge. After the threshold achieving a
stationary status, the insertion of new nodes and the tuning of the
weight will also reach a stable status. Insertion will stop and the
following input data will only engender tuning of the weight of
nodes if the nodes are distributed throughout the whole feature
space of the input data. It makes the memory layer avoid the
permanent increase of nodes.

In Algorithm 1, each class is allocated a subnetwork. For
different classes, the dimension of vectors might differ. In other
words, the memory layer can memorize different data types
(patterns with different dimensions).
3.2. Associative layer

The associative layer builds associations between key and
response vectors. Key vectors belong to a key class and response
vectors belong to a response class. In the associative layer (Fig. 1),
the nodes are connected with arrow edges. Each node represents

kamela
Highlight

kamela
Highlight

F. Shen et al. / Neurocomputing 104 (2013) 57–7162
one class—the beginning of the arrow indicates the key class and
the end of the arrow indicates the corresponding response class.

During training of the associative layer, we use association pair
data – the key vector and response vector – as the training data.
Such data input incrementally into the system. First, Algorithm 1
is used to memorize information of both the key and the response
vectors. If the key class (or response class) already exists in the
memory layer, the memory layer will learn the information of the
key vector (or the response vector) by adding new nodes or
tuning weights of nodes in the corresponding subnetwork. If the
key or response class does not exist in the memory layer, it builds
a new subnetwork to memorize the new key or response class
with the key or response vector as the first node of the new
subnetwork.

The class name of the new class is sent to the associative layer.
In the associative layer, if nodes that represent the key and
response class already exist, we connect their nodes with an
arrow edge. The beginning of the arrow corresponds to the key
class node and the end corresponds to the response class node.
This creates an associative relationship between the key class and
the response class.

If no node represents the key (or response) class within the
associative layer, we add a node to the associative layer and use
that node to express the new class. Then, we build an arrow edge
between the key class and response class. Algorithm 2 gives the
details for training the associative layer with the key and
response vectors as the input data.

In Table 3, we list the contents of the node in the associative
layer and some notations used in the following algorithms.

Algorithm 2. Learning of the associative layer.
Table 3
Conten

followi

Nota

ci

mi

W i

RCi

Ti

TLi

TFi

B

D

(i,j)

W ði,j
1:
 Initialize the associative layer network: initialize node set

B, arrow edge set D� B� B to the empty set, i.e., B¼ |,

D¼ |

2:
 Input a key vector xARD to GAM; the class name of x is cx.

3:
 Use Algorithm 1 to memorize key vector x in the memory

layer.

4:
 if No node b exists in the associative layer representing

class cx then

5:
 Insert a new node b representing class cx into the

associative layer:
B¼ B [fbg, cb ¼ cx, mb ¼ 0, Wb ¼ x ð13Þ
6:
 else

7:
 Increment the associative index of b: mb’mbþ1;

8:
 Find node i that is most frequently being winner in

subnetwork cx:
i¼ arg maxjA cx
M

cj
x

9:
 Update the weight of node b in associative layer:
Wb ¼Wci

x
.

ts of node in the associative layer and some notations to be used in the

ng algorithms.

tion Meaning

Class name of node i

Associative index of node i

Weight of node i

Response classes of node i

Time order of current node i in a temporal sequence

Time order of the latter item of node i in a temporal sequence

Time order of the former item of node i in a temporal sequence

Node set of the associative layer

Connection (arrow edge) set of the associative layer

Connection (arrow edge) from node i to node j

Þ Weight of connection (i,j)
10:
 end if

11:
 Input the response vector yARm to GAM, the class name

of y is cy.

12:
 Use Algorithm 1 to memorize the response vector y in the

memory layer.

13:
 if No node d representing class cy in the associative layer

then

14:
 Insert a new node d representing class cy into the

associative layer:
B¼ B [fdg, cd¼cy, md¼0, Wd ¼ y.

15:
 else

16:
 Find node i which is most frequently being winner in

subnetwork cy:
i¼ arg maxjA cy
M

cj
y

17:
 Update the weight of node d in associative layer:
Wd ¼Wci

y
.

18:
 end if

19:
 if There is no arrow between node b and d then

20:
 Connect node b and d with an arrow edge. The

beginning of the arrow is node b, the end of the arrow is
node d.
21:
 Add arrow (b,d) to connection set D: D¼D [fðb,dÞg,

22:
 Set the mbth response class of b as cd: RCb½mb� ¼ cd,

23:
 Set the weight of arrow (b,d) as 1: W ðb,dÞ ¼ 1.
24:
 else

25:
 Set the mbth response class of b as cd: RCb½mb� ¼ cd,

26:
 Increment the weight of arrow (b,d) with 1:

W ðb,dÞ’W ðb,dÞ þ1.
27:
 end if
In the associative layer, the weight vector of every node is
selected from the corresponding subnetwork of the memory
layer. Steps 8, 9, 16, and 17 in Algorithm 2 show that the node
that is most frequently the winner is chosen as the typical node of
the corresponding subnetwork in the memory layer, and the
weight vector of the typical node is set to the weight of that
class node in the associative layer.

Algorithm 2 can realize incremental learning. For example, we
presume that Algorithm 2 has built the association of x1-y1. We
want to build the association x2-y2 incrementally. If cx2

and cy2

differ from class cx1
and cy1

, we need to only build a new arrow
edge from class cx2

to class cy2
. This new arrow edge does not

influence the arrow edge ðcx1
,cy1
Þ. If either cx2

or cy2
is the same as

cx1
or cy1

, for example, cx2
¼ cx1

, and cy2
acy1

, then Algorithm 1
incrementally memorizes the pattern x2 in subnetwork cx1

, and
Algorithm 2 updates the weight and associative index of node cx1

in the associative layer. Then, Algorithm 2 finds or generates a
node cy2

in the associative layer and builds an arrow edge from cx1

to cy2
, which differs from the arrow edge ðcx1

,cy1
Þ. In this situation,

the pair x2-y2 is learned incrementally. The situation cx2
acx1

,
cy2
¼ cy1

can be analyzed similarly.
From Step 26 of Algorithm 2 we also find that, if an associative

relationship exists between the key class and response class, the
weight of the arrow edge between the two classes will be
incremented. Using this weight of the arrow edge, during the
recall, if one key vector is associated with several response
classes, we can recall the stored response classes in the order of
their weights—the response class with the highest weight is
recalled first. Thus, we can easily recall the stored responses
associated with the key most frequently.

Because we adopt a separated layer to memorize the associa-
tive relationship between classes, building the associative layer
with Algorithm 2 also demonstrates that GAM can implement

kamela
Highlight

F. Shen et al. / Neurocomputing 104 (2013) 57–71 63
one-to-one, one-to-many, many-to-one, or many-to-many asso-
ciations. The third layer of Fig. 1 presents an example of a many-
to-many association network.

Furthermore, the adoption of the arrow edge between the
classes is very useful for real tasks. For example, for some robotic
intelligence tasks, the arrow edge can be set as an instruction for
the robot to complete a specific action, as shown in the experiment
in Section 5.5.

3.3. Temporal sequence

For temporal sequence associations, the question is, given a
key vector, how to associate the complete temporal sequence.
This key vector is usually one element chosen randomly from the
complete temporal sequence.

To build associations between context elements with time order,
we take all elements in the temporal sequence as both key vectors
and response vectors, i.e., the former element is a key vector and
the following element is the corresponding response vector, and on
the contrary, the latter element is also set as a key vector and the
former one is set as the corresponding response vector, as shown in
Fig. 4. This was done to achieve the goal: randomly choosing one
item from the temporal sequence as the key vector, we are able to
associate the complete temporal sequence.

We use Algorithm 2 to build an associative relationship between
key vectors and their context vectors. At the same time, we store the
time order information in the nodes of the associative layer.
Algorithm 3 gives details of the temporal sequence training process.

Algorithm 3. Learning of the temporal sequence.
Fig. 4.
Every e

vector.
1:
 Input a temporal sequence X ¼ x1,x2, . . . ,xn with time
order t1,t2, . . . ,tn. The class names of the sequence items
are cx1

,cx2
, . . . ,cxn .
2:
 for k¼ 1,2, . . . ,n do

3:
 if konthen

4:
 Set xk as the key vector, xkþ1 as the response vector.

5:
 Use Algorithm 2 to build an associative connection

between xk and xkþ1. The corresponding nodes in the

associative layer are bxk
and bxkþ 1

.

6:
 end if

7:
 if k41 then

8:
 Set xk as the key vector, xk�1 as the response vector.

9:
 Use Algorithm 2 to build an associative connection

between xk and xk�1. The corresponding nodes in the

associative layer are bxk
and bxk�1

.

10:
 end if

11:
 Update the time order of bxk

with:
TFbxk
½mbxk
� ¼ tk�1

ð14Þ
Tbxk
½mbxk
� ¼ tk

ð15Þ
TLbxk
½mbxk
� ¼ tkþ1

ð16Þ
12:
 end for
Algorithm 3 builds an associative relationship between con-
text patterns in the temporal sequence. With the associative
Temporal sequence is separated into a series of patterns with time order.

lement of a temporal sequence serves as both key vector and response
relationship described here, randomly given one item in any
position of the temporal sequence as a key vector, it is possible
for the GAM to recall the complete temporal sequence. In
addition, Algorithm 3 is suitable for incremental learning. For
example, if we want to add items xnþ1,xnþ2, . . . ,xnþm to the
temporal sequence X with time order tnþ1,tnþ2, . . . ,tnþm, we only
need to repeat Steps 2–12 of Algorithm 3 for k¼ n,nþ1,: :nþm.
This lets it to learn the new items incrementally, without destroying
the learned associative relationship.

If we want to learn a new temporal sequence Y that is different
from X, we use Algorithm 3 to train Y and build an associative
relationship between items of Y in the associative layer. We
increment the associative index mi of the repeated class i to store
the corresponding response class and time order if some items of
the Y sequence are repeated with some items of the X sequence.
Consequently, the learning results of sequence Y do not influence
the learned results of sequence X.

Using the associative index mi for response class RCi, time
order Ti, the time order of the latter pattern TLi, and the time order
of the former pattern TFi ensures that even if several repeated or
shared items exist in a temporal sequence, the GAM can recall the
complete temporal sequence accurately. Temporal sequences
with repeated or shared items are difficult for some traditional
AM systems, as described in Section 1.
4. Recall and associate

In Section 2, we describe the GAM network structure. Section 3
discusses GAM learning algorithms. This section shows the recall
and associating algorithms.

When a key vector is presented, the AM is expected to return a
stored memory pattern corresponding to that key. Typical AM
models use both auto-associative and hetero-associative mechan-
isms [28]. Auto-associative information supports the processes of
recognition and pattern completion. Hetero-associative informa-
tion supports the processes of paired-associate learning. In this
section, we explain the recall algorithm for auto-associative tasks,
and subsequently discuss the associating algorithm of hetero-
associative tasks; the hetero-associative tasks include one-to-one,
one-to-many, many-to-one, and many-to-many associations. We
also describe the recall algorithm of the temporal sequence.

4.1. Recall in auto-associative mode

For auto-associative tasks, the AM is expected to recall a stored
pattern resembling the key vector such that noise-polluted or
incomplete inputs can also be recognized. Fig. 5 shows the basic
idea for auto-associative tasks. Some attractors exist in the vector
space, and every attractor has an attraction basin. If the input
Fig. 5. Every attractor has an attraction basin. If the input pattern (key vector) is

located in an attraction basin, the corresponding attractor is the associated result.

If the input key vector lies outside all attraction basins, the key vector fails to

recall the memorized pattern.

kamela
Highlight

F. Shen et al. / Neurocomputing 104 (2013) 57–7164
pattern (key vector) is located in an attraction basin, the corre-
sponding attractor will be the associated result. If the input key
vector lies outside all attraction basins, the key vector fails to
recall the memorized pattern.

As shown in Fig. 3, SOINN separates input patterns into different
Voronoi regions; each Voronoi region acts as an attraction basin for
an associative process, and the node in the Voronoi region acts as an
attractor. For the associative process, if an input key vector lies in one
Voronoi region Vi, we assign the weight vector W i of the corre-
sponding node i as the associative result. If the distance between the
input vector and one node is greater than the similarity threshold
that is the radius of the Voronoi region, it means that the input key
vector is beyond the attraction basin. If the input key vector is
beyond the corresponding Voronoi regions for all nodes, then the
key vector fails to recall the memorized pattern. Algorithm 4 gives
the detail for the auto-associative recall process.

Algorithm 4. Auto-associative: recall the stored pattern with a
key vector.
1:
 Assume there are n nodes in the memory layer, input a
key vector x.
2:
 for i¼ 1,2, . . . ,n do

3:
 Calculate the weight sum of input vector, and 1

2 JW iJ
2: is

a bias.
giðxÞ ¼WT
i x� 1

2 JW iJ
2 ð17Þ
4:
 end for

5:
 Find the maximum gkðxÞ ¼maxi ¼ 1,2,...,ngiðxÞ
6:
 if JxJ2
�2gkðxÞ4Tk then
7:
 Output message: x failed to recall the memorized
pattern.
8:
 else

9:
 Output Wk as the recalling pattern.

10:
 Output the class of node k as the class of x.

11:
 end if
Through Steps 2–5, Algorithm 4 judges which Voronoi region
the input x most likely belongs to. This is because

Jx�W iJ
2
¼ JxJ2

�2WT
i xþJW iJ

2, ð18Þ

JxJ is the common item for all nodes; thus, minimizing Jx�W iJ
2 is

equivalent to maximizing WT
i x� 1

2 JW iJ
2, which is calculated in Step

3 of Algorithm 4. In Step 6, Algorithm 4 judges if the distance
between the input vector and Wk (which is the center of the Voronoi
region vk) is larger than the similarity threshold Tk (which is the
radius of the Voronoi region Vk). If the distance is larger than Tk, it
means that x is beyond the Voronoi region Vk. Because x most likely
belongs to Vk; therefore, we conclude that x fails to recall the
memorizing pattern. If the distance is less than Tk, it means that x

is located in the attraction basin of attractor k, we output the Wk as
the associative result, and x belongs to the same class of Wk.

4.2. Association in the hetero-associative mode

The paired-associate learning task is a standard evaluation of
human episodic memory [6]. Typically, the subjects are presented
with randomly paired items (e.g., words, letter strings, and pictures)
and are asked to remember each x-y pair for a subsequent memory
test. During the testing, the x items are presented as cues, and the
subjects attempt to recall the appropriate y items.

The GAM memorizes the x-y pair with Algorithm 2. To
associate y with x, first we use Algorithm 4 to recall the stored
key class cx of the key vector x; the corresponding node for class cx

in the associative layer is bx. Then, we use RCbx
½k�, k¼ 1, . . . ,mbx

to
obtain the response class cy and corresponding node by. Finally,
we output Wby
as the hetero-associative results for the key vector

x. Algorithm 5 shows the details of associating y with key vector x.
Using Algorithm 5, we associate a pattern y from the key vector x.

If more than one class is associated with a key, we output all
associated patterns, which are typical prototypes of response classes.
These recalled results are sorted in order of the weights of the
associative connection arrows. That is, Algorithm 5 recalls the one-
to-many associated patterns in their weighted order. Combined with
the learning process Algorithm 2, we know that the GAM is able to
realize one-to-one, one-to-many, many-to-one, and many-to-many
associations.

Algorithm 5. Hetero-associative: associate stored patterns with
key vector x.
1:
 Input a key vector x.

2:
 Using Algorithm 4 to classify x to class cx.

3:
 In associative layer, find node bx corresponding to

subnetwork cx.

4:
 for k¼ 1,2, . . . ,mbx

do
5:
 Find the response classes cy½k�: cy½k� ¼ RCbx
½k�.
6:
 Sort cy½k� with the order of W ðcx ,cy ½k�Þ.
7:
 end for

8:
 for k¼ 1,2, . . . ,mbx

do
9:
 Find node by½k� in the associative layer corresponding to

subnetwork cy½k�.
10:
 Output weight Wby½k� as the associated result with key

vector x.

11:
 end for
Algorithm 6. Recall temporal sequence with a key vector x.
1:
 Input a key vector x.

2:
 Using Algorithm 4 to classify x to class cx.

3:
 In associative layer, find node bx corresponding to

subnetwork cx.

4:
 for k¼ 1,2, . . . ,mbx

do
5:
 Find the corresponding time order ts
k by

tk
s ¼ Tbx

½k�, k¼ 1,2, . . . ,mbx
.

6:
 Find the minimal time order tns from tk
s , k¼ 1,2, . . . ,mbx

.

The corresponding index is kn

s .
7:
 end for

8:
 Output the weight Wbx

of node bx as the recall item for

key vector x, the corresponding time order of x is tns .
9:
 Set kL ¼ kn

s , node b¼ bx.
10:
 while Any latter items of the key vector are not recalled
do
11:
 Find the time order of the latter pattern by

tlatter ¼ TLb½kL�.

12:
 Find the response class cy by cy ¼ RCb½kL�. For cy, the

corresponding node of cy in the associative layer is by.

13:
 Output the weight Wby

of by as the recalled next item.

Output tlatter as the time order of the next item.

14:
 Find index k in node by with Tby

½k� ¼ tlatter , update

parameters by kL ¼ k, b¼ by.
15:
 end while

16:
 Set kF ¼ kn

s , b¼ bx.
17:
 while Any former items of the key vector are not recalled
do
18:
 Find the time order of former item by tformer ¼ TFb½kF �.
19:
 Find the response class cy by cy ¼ ACb½kF �. For cy, the

corresponding node of cy in the associative layer is by.

20:
 Output the weight Wby

of by as the former item, and

output tformer as the time order of the former item.

F. Shen et al. / Neurocomputing 104 (2013) 57–71 65
21:
 Find the index k in node by with Tby
½k� ¼ tformer , update

parameters by kF ¼ k, b¼ by.
22:
 end while
4.3. Recall temporal sequences

Section 3.3 explains the learning algorithm for temporal
sequences. All elements of a temporal sequences are trained as key
vectors and response vectors. The time order of every item is
memorized in the node of the associative layer. To recall the temporal
sequence when a key vector is presented, we first perform auto-
association for the key vector with Algorithm 4 and recall the key
class. Then, we associate the former and the latter items with the help
of the recalled time order of the current item. Finally, we set the
associated items as the key vector and repeat the above steps to recall
the complete temporal sequence. Algorithm 6 gives details of recal-
ling a temporal sequence from a key vector.

In Algorithm 6, we first recall the item corresponding to the
key vector; then, we recall the latter items and the former items
of the recalled key with the help of the time order stored in the
associative layer. Because only one time order corresponds to one
item of the temporal sequence, even if several repeated or shared
items exist in the temporal sequence, Algorithm 6 can recall the
complete temporal sequence accurately. With the learning process
in Algorithm 3 and recall process in Algorithm 6, the GAM
accurately associates temporal sequences.

In fact, without using of the time order, the recall and
associating processes in Algorithm 6 are the same as those in
Algorithm 5. Algorithm 4 forms the basis of Algorithms 5 and 6.
The recall processes of auto-associative information, hetero-
associative information, and temporal sequences are, therefore,
uniform. If we define a pattern as a temporal sequence with only
one item and define a paired pattern as a temporal sequence with
two items, Algorithm 6 can be used for recalling auto-associative
and hetero-associative information.
Fig. 7. Generate noise patterns from the original pattern.
5. Experiment

In this section, we perform experiments to test the GAM. Initially,
we use binary (bipolar) and real-value data to test its memory and
association efficiency, and then, we use temporal sequential data to
test the GAM and compare it with some other methods. Finally, an
experiment with a humanoid robot is used to test the GAM for
real tasks.

5.1. Binary (bipolar) data

Several traditional AM systems process only binary data. In
this experiment, we use a binary text character dataset taken
from the IBM PC CGA character font to test the GAM. This dataset
has been adopted by methods, such as SOIAM [10] and the
Fig. 6. Binary text ch
Kohonen feature map associative memory (KFMAM) [9], to test
their performance. Fig. 6 shows the training data, which consists
of 26 capital letters and 26 small letters. Each letter is a 7�7 pixel
image, and each pixel can have the values of either �1 (black) or
1 (white). During the memorization, capital letters are used as the
key vectors and small letters are used as the response vectors, i.e.,
A-a, B-b, . . . ,Z-z.

In [10], with the dataset presented in Fig. 6, Sudo et al.
compare the results of their SOIAM with bidirectional AM with
the pseudo-relaxation learning algorithm for BAM (PRLAB) [29],
KFMAM [9], and KFMAM with weights fixed and semi-fixed
neurons (KFMAM-FW) [30]. Here, we compare the GAM with
other methods by using the same dataset. For the GAM, the two
parameters of SOINN are set as agemax ¼ 50 and l¼ 50. For other
methods, we adopt the same parameters as those reported in
Table 1 of [10].

For the GAM, every letter is considered to be one class; thus,
there are 52 classes for this task. For each class, the original
training set comprises one pattern (7�7 binary image). To
expand the training set, we randomly add 5–20% noise to the
original pattern and repeat this process 100 times to obtain 100
training patterns for each class. The noise is generated by the
following method: randomly choose some pixels (e.g., 10% of total
pixels) and transform their value from 1 to �1 or from �1 to 1.
Fig. 7 shows an example. Only the GAM is able to memorize
patterns with the class; thus, newly generated patterns are used
only for training the GAM. For other methods, original patterns
are used as the training set.

First, we test GAM, SOIAM, BAM with PRLAB, KFMAM, and
KFMAM-FW under a stationary environment, which means that
all pairs A-a, B-b, . . . ,Z-z are used to train the systems with-
out changing the data distribution. For the GAM, 90 nodes are
automatically generated to memorize the input patterns in the
memory layer, and 52 nodes exist in the associative layer to
represent the 52 classes. An associative relationship is also built
between capital letters and small letters. During the recall
process, capital letters (without noise) serve as key vectors. With
Algorithm 5, all associated letters are recalled, the accurate recall
rate is 100%. SOIAM clustered the combined vectors
Aþa,Bþb, . . . ,Zþz, and generated 93 nodes to represent the 26
clusters. When a capital letter serves as the key vector, the letter
aracter dataset.

F. Shen et al. / Neurocomputing 104 (2013) 57–7166
is compared with the former part of every node and the nearest
one is found; then, the latter part is reported as the associated
results. SOIAM also achieved a 100% recall ratio. For BAM with
PRLAB, KFMAM, and KFMAM-FW, the training data consist of 26
pairs, A-a, B-b, . . . ,Z-z. Under this stationary environment,
BAM with PRLAB and KFMAM-FW obtained perfect recall results
(100%), but KFMAM showed a poor recall ratio of only 63%.

Next, we consider incremental learning. The patterns of A-a,
B-b, . . . ,Z-z are input into the system sequentially. In the first
stage, only A-a are memorized, and then B-b are input into the
system and memorized. This environment is non-stationary—-

new patterns and new classes are input incrementally into the
system. Table 4 compares the results for the GAM with other
methods. GAM requires 94 nodes to memorize all 52 classes in
the memory layer. One node represents one class in the associa-
tive layer; therefore, there are 52 nodes in the associative layer.
This gives GAM an accurate recall rate of 100%. It is difficult for
BAM and KFMAM to implement incremental learning. New input
patterns destroy the memorized patterns. SOIAM requires 99
nodes to represent the association pairs; it recalls the associated
patterns with a 100% accurate recall rate. For KFMAM-FW, if we
adopt a sufficient number of nodes (more than 36), it can achieve
perfect recall results; however, if the maximum number of
patterns to be learned is not known in advance, we do not know
how to assign the total number of nodes for KFMAM-FW [10].

Third, we consider the many-to-many association. The BAM-
and KFMAM-based methods are unsuitable for this task. SOIAM
can realize many-to-many associations; however, if it learns a
new association pair incrementally, it puts the key and response
vectors of a new pair together as one combination vector and
sends it to SOIAM for clustering. Consequently, even if we build
new associations within the learned letters, SOIAM requires the
addition of new nodes to represent the new associations. In [10],
pairs such as (A, a), (A, b), (C, c), (C, d) (C, e), (F, f), (F, g), (F, h), and
(F, i) as shown in Fig. 8 are used to test the one-to-many
association.

To achieve this target, SOIAM combines A and b to produce
vector Aþb, C and d to produce vector Cþd, and so on, and then
clusters such combination vectors with new nodes. New nodes,
different from Aþa, Cþc, and Fþ f , are added into the system to
represent the associative relationship between A-b, C-d, etc. To
realize such one-to-many associations, SOIAM adds 81 nodes to
store the new associative relationship. GAM only adds new
Table 4
Comparison: recalling results of GAM and other methods under an

incremental environment.

Method Number of nodes Recall rate

GAM 94 100%

SOIAM 99 100%

BAM with PRLAB – 3.8%

KFMAM 64 31%

81 38%

100 42%

KFMAM-FW 16 Infinite loop

25 Infinite loop

36 100%

64 100%

Fig. 8. One-to-many association examples.
associative relationships (arrow edges) between the nodes in
the associative layer—no new nodes are added in the memory
or associative layer. For example, to realize A-b association, we
only need to add an arrow edge from node A to node b in the
associative layer—no new nodes are generated. Both GAM and
SOIAM can effectively recall old associated patterns and new
added response vectors (100% accurate recall rate); however,
SOIAM requires additional storage and computation time to
cluster new association pairs and adds 81 new nodes. On the
other hand, GAM requires no new storage and nearly no addi-
tional computation time for building new associations. If we want
to build much more association between patterns such as A-c,
A-d, . . . ,A-z, and even much more complicated many-to-many
association among all capital or small letters, SOIAM must add a
large number of new nodes. Whereas, by using GAM, it is easy to
build an associative relationship in the associative layer—no
additional nodes are needed, and GAM saves significant storage
and computation time compared to SOIAM.

Finally, we test how noise influences these methods. Along
with our memorized results, we add noise to the capital letters
and use the noisy capital letters as key vectors for recalling the
memorized small letters. We generated 100 noisy key vectors for
each capital letter; 2600 noisy patterns serve as key vectors. Fig. 9
shows the comparison. Fig. 9 shows that GAM and SOIAM are
robust with respect to noise, whereas, other methods are sensi-
tive to noise. For example, when the noise level reaches 20%, the
recall rate for GAM and SOIAM reached 91.3%, but it was less than
70% for other methods. A noise level of 24% produced a recall rate
of greater than 85% for GAM and SOIAM; whereas, for other
methods it was less than 55%.
5.2. Real-value data

In this experiment, we adopt the AT&T face database, which
includes 40 distinct subjects and 10 different images per subject.
These subjects are of different genders, ages, and races. For some
subjects, the images are taken at different times. There are
variations in facial expressions (open/closed eyes, smiling/non-
smiling) and facial details (glasses/no glasses). All images are
taken against a dark homogeneous background with subjects in
an upright frontal position, with tolerance for tilting and rotation
of up to about 201. There is a variation of up to about 10% in
the scale.

The original images are grayscale, with a resolution of
112�92. Before presenting them to the GAM, we normalize the
value of each pixel to the range [�1, 1]. Fig. 10(a) shows 10
images of the same person, and Fig. 10(b) shows the 10 different
people to be memorized. To memorize each person, five images
are used, and the remaining five images of such persons will be
Fig. 9. Comparison: how noisy key vectors influence GAM and other methods.

Fig. 10. Facial image (a) 10 images of one person and (b) 10 different persons.

F. Shen et al. / Neurocomputing 104 (2013) 57–71 67
used to test the memorized efficiency. No overlap exists between
the training and test sets.

Under a non-stationary incremental environment, 50 patterns
belonging to 10 classes are input sequentially into the system.
During the training, SOIAM defines a pattern as a response vector,
then combines key vector and the response vector, and sends it to
SOIAM for memorization. There are 50 combination vectors, for
which SOIAM generates 101 nodes to store those associative
pairs. For GAM, the key vectors are memorized in the auto-
associative mode—its memory layer will memorize the patterns
incrementally and learn the number of nodes automatically. With
agemax ¼ 50 and l¼ 50 for GAM, 22 nodes are generated to store
the input patterns. The associative layer has 10 nodes representing
10 classes. No association is produced between classes (auto-
associative mode). During the recall process, the remaining test
data for the same person serve as key vectors. Because the recall
performance is affected by the selection of training images, training
is repeated 20 times and we report the average recall rate as the
recall performance. For each training time, we adopt different
training examples (random selection of five images from 10 per
subject). SOIAM yields different results with different parameters. Its
best recall rate is 95.3%. Using Algorithm 4, we recall the memorized
pattern according to the key vectors and the recall rate is 96.1%,
which is slightly better than for SOIAM.

Under a stationary environment, both GAM and SOIAM
obtained nearly the same results as for the incremental
environment.
As described in Section 5.2, if we want to add a new associative
relationship between different classes (e.g., use the face of a
person as the key vector, associated with a face belongings to
another person), SOIAM must add new combination vectors for
training and add new nodes to memorize the new knowledge.
However, for GAM, if no new class is created, we only need to add
a new associative relationship between the nodes in the associa-
tive layer, and no new nodes are generated. This is a benefit that is
derived from the properties of memorization in classes and
association with classes.

In this experiment, we only compared GAM with SOIAM under
a non-stationary incremental environment, with no comparison
with other methods, because no other methods are suitable for
non-stationary incremental learning with real-value data.

5.3. Temporal sequences

In this section, we test the ability of GAM to store and recall
temporal sequences. In [13], Sakurai et al. compared their
proposed SOM-AM with temporal associative memory (TAM)
[6], and conventional SOM [30]. According to [13], two open
temporal sequences (Fig. 11) are used. Here, sequence
A-B-C-D-E is first learned using each method;
F-G-C-H-I is then learned incrementally as new informa-
tion. The two temporal sequences have a shared item—C. Sub-
sequent to the training, patterns A and F are used as the key
vectors to recall the temporal sequences. In fact, TAM cannot

Fig. 11. Two open temporal sequences: C is shared by both sequences.

Fig. 12. Recall results of temporal associative memory (TAM), shared item leads to

failure.

Fig. 13. Recall results of self-organizing map (SOM), shared item leads to failure.

Fig. 14. Recall results of SOM associative memory (SOM-AM), the first item has to

serve as key vector.

Fig. 15. Recall results of GAM, any item is able to serve as key vector.

Fig. 16. Each image is divided into five image blocks to represent marked

feature areas.

F. Shen et al. / Neurocomputing 104 (2013) 57–7168
store one-to-many associations. TAM learning does not converge;
it fails to recall the sequences (Fig. 12). For conventional SOM,
because the contextual information of temporal sequences is not
considered in the learning or recall process, the correct sequence
is not recalled (Fig. 13). SOM-AM resolves the ambiguity by using
recurrent difference vectors and recalled both temporal
sequences accurately (Fig. 14).

For the proposed GAM, the sequence items are first memorized
in the memory layer as different classes, and then the associative
relationships are built in the associative layer. Using Algorithm 6,
GAM can recall sequences with any item as the key vector. While
SOM-AM can recall the sequence only if the first item serves as the
key vector. For the temporal sequences in Fig. 11, it can recall the
first sequence only if pattern A serves as the key vector, and can
recall the second sequence only if pattern F serves as the key vector.
For GAM, if A, B, D, or E serves as the key vector, the first sequence
is recalled. If F, G, H, or I serves as the key vector, the second
sequence is recalled. If C serves as the key vector, both the first and
the second sequences are recalled. Fig. 15 shows the recall results.

Then, we test the performance of GAM with a real audio data.
The data were captured from a recording of the following
passage:
We hold these truths to be self-evident that all men are created

equal, that they are endowed by the creator with certain unalienable

right that among these are life, liberty and the pursuit of happiness.

This paragraph was pronounced slowly such that there was a
pause after each word was uttered. We then split this audio file
into 35 segments, each containing the audio data of one word.
Then, we extracted the 15-dimensional spectrum feature of these
35 segments. Then, we used GAM to memorize the sequence of
the audio segments. For testing, we selected an arbitrary word
such as ‘‘that’’ or ‘‘happiness’’, as the key vector. The results show
that the entire passage was recalled perfectly. Subsequent to the
50 trials with GAM, the recall rate was 100%.

Finally, we compare the experimental results of GAM and
Hidden Markov Model (HMM) on the Yale Face Database [31].
This database contains 165 gray-scale images in Graphics Inter-
change Format (GIF) of 15 individuals. There are 11 images per
subject, one per different facial expression, illumination or con-
figuration. They are divided into two parts, 10 or five images for
training, and the others for testing.

Each image is partitioned into five overlapped image blocks
(Fig. 16), representing five marked feature areas (hair, forehead, eyes,
nose and mouth). Instead of using the pixel intensities within each
image block, we form an observation vector with the coefficients of
the two-dimensional Discrete Cosine Transform (2D-DCT) for each
image block. This extracted feature (observation vector) leads to a
decrease in the computational complexity and tend to be less
sensitive to noise and changes in illumination. In our experiment,
the DCT size is 12�12, and at last we get nine DCT coefficients
(a 3�3 array of low-frequency coefficients) as observation vectors.
After 2D-DCT, each image is described as a sequence of five
9-dimension vectors.

At training phase, we train one Gaussian Mixture Hidden Markov
Model (GMHMM) for per individual. Following the model initializa-
tion (five hidden states), the model parameters are re-estimated using
an expectation maximization (EM) algorithm to maximize the prob-
ability of observing data. At the M-step, we adopt Gaussian

F. Shen et al. / Neurocomputing 104 (2013) 57–71 69
probability density function to estimate the emission probability

bjðoÞ ¼
XR

s ¼ 1

cj,sGðo;uj,s,Uj,sÞ for j¼ 1,2 . . . ,N, ð19Þ

where o is the observation vector, G is Gaussian distribution, uj,s and
Uj,s is the expectation and variance of the sth Gaussian distribution of
the jth state. The parameters uj,s and Uj,s are re-estimated by the
weighted expectation and covariance matrix of the observations.

Similar to HMM, one GAM is trained for one individual. We
initialize the network with five nodes in a supervised way. Then
the observation vectors are fed into the network to activate the
winner neuron and adjust its weights. At testing phase, we use
the following score function to estimate the similarity between
testing images and GAMs

scoreðjÞ ¼
X5

i ¼ 1

Jvi�vj
iJ

2 for j¼ 1,2 . . . ,15, ð20Þ

where vi is the ith block images of testing image and vi
j is the ith

neuron of the j th GAM.
Table 5 shows the comparison results of HMM and GAM.

It shows that our model and HMM can accurately recognize all test
images when ten images of per individual participate the training.
When only five images of one individual is trained, the recognition
rate of GAM is 94%, which is slightly better then HMM.

5.4. Real task for robot with GAM

This experiment uses a humanoid robot with an image sensor
and sound sensor to test whether GAM is applicable to real tasks.
A humanoid robot, HOAP-3 (shown in Fig. 18) (Fujitsu Ltd.), is
Table 5
Comparison: recalling results of GAM and HMM.

Method Number of training images Recall rate (%)

HMM 5 92

10 100

GAM 5 94

10 100

Fig. 17. Four objects memorized by a humanoid robot: an apple, an orange, a bell,

and a drum.
adopted for this experiment. Fig. 17 shows four objects used for
testing GAM: an apple, an orange, a bell, and a drum.

For the apple and orange, we merely show them to HOAP-3
and make HOAP-3 memorize their images in the GAM memory
layer. We set the associative action as the instruction for HOAP-3
to point its finger at the objects. This task takes place in the auto-
associative mode. During the testing, if the image of the apple or
orange is shown to HOAP-3, it must remember what the image is
and point its finger at the object.

For the bell, we show it to HOAP-3 and then push the button of
the bell so that the robot can sense the bell sound. Image of the
bell serves as the key vector and sound of the bell serves as the
response vector. The associative action is set as an instruction for
HOAP-3 to use its finger to push the button. On the other hand,
sound of the bell serves as the key vector and image of the bell
serves as the response vectors. The associative action is set as an
instruction for HOAP-3 to point its finger at the bell. This task
takes place in the hetero-associative mode. During the testing, if
HOAP-3 is shown a bell, it must recall the sound of the bell, and
use its finger to push the bell button. On the other hand, if HOAP-
3 hears the sound of the bell, it should points its finger at the bell.

Similarly, image and sound of the drum serve as the key and
response vectors, respectively. The corresponding associative
action is also set as an instruction for HOAP-3 to hit the drum
with its hand or point its finger at the drum.

The patterns and association pairs described above are pre-
sented to a GAM built in HOAP-3’s brain for storing objects and
building associations between key-response pair vectors. For
features of images collected using the HOAP-3 image sensor, we
perform grayscale transformation and adopt 36-dimensional low-
frequency DCT coefficients as the feature vectors. For features of
the sounds collected using the HOAP-3 sound sensor, we extract
the 15-dimensional spectrum feature at a 20 kHz, 50 ms
sampling rate.

Subsequent to training the memory system (GAM) of HOAP-3,
we test HOAP-3 with some key vectors. First, we show an apple to
HOAP-3. HOAP-3 recalls the apple’s image, turns its head to the
apple, and points its finger at the apple according to the
memorized associative action (instruction). Similarly, when we
show a orange, a bell or a drum to the HOAP-3, it can recall the
correct actions. Fig. 18 shows the HOAP-3 points its finger at the
sound source(bell) when it hear the sound of the bell.

We repeat the above experiment 10 times, and HOAP-3
successfully completes the task every time. Table 6 is the
statistical results for hetero-associative of bell (image and sound).
For drum, the results are same as for bell.

This experiment demonstrates that GAM can perform a real
task efficiently. It recalls the objects (apple, orange, bell, and
Fig. 18. Humanoid robot HOAP-3 (Fujitsu Ltd.). The top-right image is obtained

from HOAP-3 image sensor. After hearing the bell, HOAP-3 turns its head to the

bell and watches it; it then points its finger at the bell.

Table 6
Result of hetero-associative for robot.

Key vector Response vector Number of

experiments

Recall rate (%)

Sound of bell Image of bell 10 100

Image of bell Sound of bell 10 100

Table 7
Comparison of GAM with other typical AM systems: which target can it achieve?

Mark J for best systems; mark n for systems with lower performance than J;

mark � for systems unable to realize the target.

Targets \ AM systems Hopfield

net

BAM KFM

AM

SOM-

AM

MAM SOIAM GAM

Memory with class � � � � � � J

Non-binary data � � � � � J J

Incremental learning � � � � � n J

Temporal sequence � � � n � � J

Many-to-many

association

� � � � n n J

Patterns with different

dimensions

� � � � � � J

F. Shen et al. / Neurocomputing 104 (2013) 57–7170
drum) effectively in auto-associative mode. It also builds effective
association between objects (bell and drum) and their sounds,
and the association is represented by actions of the robot. With
the stimuli of key vectors, GAM recalls the response patterns
effectively in a hetero-associative mode. Also note that, in this
experiment, although the dimensions of image and sound are
different, GAM builds an effective association between vectors
with different dimensions. Thus, GAM is capable of process
different data types.
6. Conclusion

This paper proposes a GAM system constructed using a net-
work consisting of three layers: input, memory, and associative.
The input vectors are memorized in the memory layer. Associa-
tive relationships are built in the associative layer. Patterns are
memorized with classes. New information (new patterns or new
classes) is stored incrementally. Patterns with binary or non-
binary data can be stored in the memory layer. The associative
layer accommodates one-to-one, one-to-many, many-to-one, and
many-to-many associations. New associations can be added
incrementally between the stored items. The special use of arrow
edges in the network makes GAM adaptable to real tasks. The
GAM can also store and recall temporal sequences.

Based on experiments reported in Section 5, Table 7 facilitates
the comparison of GAM with other typical AM systems from the
viewpoint of functionalities. The first column of Table 7 presents a
list of targets, which are very important for AM systems. If a
system can realize a target effectively, it is marked with J, and if
a system cannot realize the target, the mark � is assigned to it. n

indicates that a system can realize the target but the performance
is below that of systems marked with a J. Table 7 shows that
GAM realizes all the targets well. Among the other systems, few
can deal with one or more targets, but none of them can deal
adequately with all targets.

In conclusion, GAM combines several functions from different
AM systems. Experiments with binary data, real-value data,
temporal sequences, and real-world robot tasks show that GAM
is effective for all the targets listed in Table 7.

In the future, we will further analyze true intelligence using
GAM. Based on the symbol grounding theory, the subnetwork of
the memory layer will be considered as primitive atomic symbol
tokens, and the associative layer as the set of rules in order to
construct symbol-token strings to realize an infinite variety of
complicated human brain behavior.
Acknowledgements

This work was supported in part by the 973 Program
2010CB327903, the Fund of the National Natural Science Founda-
tion of China 60975047, and Jiangsu NSF grant BK2009080,
BK2011567.

References

[1] Bai ling Zhang, P. Cerone, Robust face recognition by hierarchical kernel
associative memory models based on spatial domain gabor transforms,
J. Multimedia 1 (4) (2006) 1–10.

[2] Mustafa C. Ozturk, Jose C. Principe, An associative memory readout for esns
with applications to dynamical pattern recognition, Neural Networks 20
(2007) 377–390.

[3] Kazuko Itoha, Hiroyasusnm Miwab, Hideakisnm Takanobud,
Atsuosnm Takanishi, Application of neural network to humanoid robot-
sdevelopment of co-associative memory model, Neural Networks 18 (2005)
666–673.

[4] N. Ikeda, P. Watta, M. Artiklar, M. Hassoun, A two-level hamming network for
high performance associative memory, Neural Networks 14 (9) (2001)
1189–1200.

[5] J.J. Hopfield, Neural networks and physical systems with emergent collective
computational abilities, Proc. Natl. Acad. Sci. U.S.A. 79 (1982) 2554–2588.

[6] B. Kosko, Bidirectional associative memories, IEEE Trans. Systems, Man
Cybernet. 18 (1) (1988) 49–60.

[7] R.M. French, Using semi-distributed representation to overcome catastrophic
forgetting in connectionist networks, in: Proceeding of the 13th Annual
Cognitive Science Society Conference, 1991, pp. 173–178.

[8] Peter Sussner, Marcos Eduardo Valle, Gray-scale morphological associative
memories, IEEE Trans. Neural Networks 17 (3) (2006) 559–570.

[9] T. Kohonon, Self-Organization and Associative Memory, Springer-Verlag,
Berlin, 1984.

[10] Akihito Sudo, Akihitosnm Sato, Osamu Hasegawa, Associative memory for
online learning in noisy environments using self-organizing incremental
neural network, IEEE Trans. Neural Networks 20 (6) (2009) 964–972.

[11] M. Hattori, M. Hagiwara, Episodic associative memory, Neurocomputing 12
(1996) 1–18.

[12] G. de A. Barreto, A.F.R. Ara ujo, Storage and recall of complex temporal
sequences through a contextually guided self-organizing neural network, in:
Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural
Networks, 2000.

[13] Naoaki Sakurai, Motonobu Hattori, Hiroshi Ito, Som associative memory for
temporal sequences, in: Proceedings of the 2002 International Joint Con-
ference on Neural Networks, 2002, pp. 950–955.

[14] M. Hagiwara, Multidirectional associative memory, in: Proceedings of the
1990 International Joint Conference on Neural Networks, 1990, pp. 3–6.

[15] Stevan Harnad, The symbol grounding problem, Physica D 42 (1990)
335–346.

[16] Rolf Pfeifer, Christian Scheier, Understanding Intelligence, The MIT Press,
2001.

[17] T.M. Martinetz, S.G. Berkovich, K.J. Schulten, ‘‘Neural-gas’’ network for vector
quantization and its application to time-series prediction, IEEE Trans. Neural
Networks 4 (4) (1996) 558–569.

[18] S.P. Lloyd, Least squares quantization in PCM, IEEE Trans. Inf. Theory IT-28
(1982) 2.

[19] J. MacQueen, Some methods for c1assification and analysis of multivariate
observations, in: L.M. LeCam, J. Neyman (Eds.), Proceedings of the Fifth
Berkeley Symposium on Mathematics, Statistics, and Probability, 1967,
pp. 281–297.

[20] F. Shen, O. Hasegawa, An incremental network for on-line unsupervised
classification and topology learning, Neural Networks 19 (2006) 90–106.

[21] T. Kohonen, Self-organized formation of topologically correct feature maps,
Biol. Cybernet. 43 (1982) 59–69.

[22] B. Fritzke, A growing neural gas network learns topologies, Adv. Neural Inf.
Proces. Syst. 7 (1995) 625–632.

[23] Danielesnm Casali, Giovannisnm Costantini, Renzo Perfetti, Elisa Ricci, Asso-
ciative memory design using support vector machines, IEEE Trans. Neural
Networks 17 (5) (2006) 1165–1174.

[24] Simon Haykin, Neural Networks: A Comprehensive Foundation, Macmillan
Coll Div, 1994.

[25] Linde, Buzo, Gray. An algorithm for vector quantizer design. IEEE Transac-
tions on Communication, COM-28 (1980) 84–95.

[26] F. Shen, O. Hasegawa, An adaptive incremental LBG for vector quantization,
Neural Network 19 (2006) 694–704.

F. Shen et al. / Neurocomputing 104 (2013) 57–71 71
[27] F. Shen, O. Hasegawa, An enhanced self-organizing incremental neural
network for online unsupervised learning, Neural Networks 20 (2007)
893–903.

[28] D.S. Rizzuto, M.J. Kahana, An autoassociative neural networkmodel of paired-
associate learning, Neural Comput. 13 (2001) 2075–2092.

[29] H. Oh, S.C. Kothari, Adaptation of the relaxation method for learning in
bidirectional associative memory, IEEE Trans. Neural Networks 5 (4) (1994)
576–583.

[30] T. Yamada, M. Hattori, M. Morisawa, H. Ito, Sequential learning for associative
memory using kohonen feature map, in: Proceedings of the 1999 Interna-
tional Joint Conference on Neural Networks, 1999, pp. 1920–1923.

[31] A.S. Georghiades, P.N. Belhumeur, D.J. Kriegman, From few to many:
illumination cone models for face recognition under variable lighting and
pose, IEEE Trans. Pattern Anal. Mach. Intell. 23 (6) (2001) 643–660.
Furao Shen received the Engineering degree from
Tokyo Institute of Technology, Tokyo, Japan, in 2006.
Currently he is an associate professor at Nanjing
University. His research interests include neural com-
puting and robotic intelligence.
Qiubao Ouyang received the BS degree in mathe-
matics in 2009 and the MS degree in computer science
in 2012 from Nanjing university, Nanjing, China. His
current research interests include neural networks,
artificial intelligence, and image processing.
Wataru Kasai received the Engineering degree in intel-
ligence system from Tokyo Institute of Technology,
Tokyo, Japan. His research interests include pattern
recognition and machine learning.
Osamu Hasegawa received the Engineering degree in
electronic engineering from the University of Tokyo,
Tokyo, Japan, in 1993. He was a Research Scientist with
the Electrotechnical Laboratory from 1993 to 1999 and
with the National Institute of Advanced Industrial
Science and Technology, Tokyo, from 2000 to 2002.
From 1999 to 2000, he was a Visiting Scientist with the
Robotics Institute, Carnegie Mellon University, Pitts-
burgh, PA. In 2002, he became a faculty member with
the Imaging Science and Engineering Laboratory,
Tokyo Institute of Technology, Yokohama, Japan. In
2002, he was jointly appointed as a Researcher at

PRESTO, Japan Science and Technology Agency. He is

a member of the IEEE Computer Society, Institute of Electronics, Information and
Communication Engineers, and Information Processing Society of Japan.

	A general associative memory based on self-organizing incremental neural network
	Introduction
	Structure of the general associative memory (GAM)
	GAM learning algorithms
	Memory layer
	Overview of SOINN
	Learning algorithm of the memory layer

	Associative layer
	Temporal sequence

	Recall and associate
	Recall in auto-associative mode
	Association in the hetero-associative mode
	Recall temporal sequences

	Experiment
	Binary (bipolar) data
	Real-value data
	Temporal sequences
	Real task for robot with GAM

	Conclusion
	Acknowledgements
	References

